

\$ sciendo Vol. 28(1),2020, 95–97

Comment On "On some Properties of Tribonacci Quaternion"

Gamaliel Cerda-Morales

Abstract

This short commentary serves as a correction of the paper by Akkus and Kızılaslan [I. Akkus and G. Kızılaslan, On some Properties of Tribonacci Quaternion, An. Şt. Univ. Ovidius Constanța, **26**(3), 2018, 5–20].

1 Corrections

Let

$$Q_n = T_n + \mathbf{i}T_{n+1} + \mathbf{j}T_{n+2} + \mathbf{k}T_{n+3},$$

where T_n is the *n*-th Tribonacci number.

In [1], Akkus and Kızılaslan introduced the following identity (which is part of the identities 6 in [1])

$$Q_n^2 - Q_{n-1}^2 = \widetilde{U}_{n+1}\widetilde{U}_{n-1}, \ n \ge 2,$$

where

$$\widetilde{U}_n = U_n + \mathbf{i}U_{n+1} + \mathbf{j}U_{n+2} + \mathbf{k}U_{n+3},$$

with $U_n = T_{n-1} + T_{n-2}$ if $n \ge 2$ and $U_0 = U_1 = 0$.

Key Words: Tribonacci numbers, Tribonacci quaternions, Tribonacci-Lucas quaternions, quaternion algebra.

2010 Mathematics Subject Classification: 11B37, 11R52, 11Y55. Received: 20.06.2019

Accepted: 15.07.2019

However, the identity of this version is wrong. In fact, if n = 2, we have

$$Q_2^2 - Q_1^2 = (1 + 2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k})^2 - (1 + \mathbf{i} + 2\mathbf{j} + 4\mathbf{k})^2$$

= (-68 + 4\mathbf{i} + 8\mathbf{j} + 14\mathbf{k}) - (-20 + 2\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})
= -48 + 2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}.

and

$$\widetilde{U}_3 \widetilde{U}_1 = (2 + 3\mathbf{i} + 6\mathbf{j} + 11\mathbf{k})(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$$
$$= -48 - 2\mathbf{i} + 6\mathbf{j} + 6\mathbf{k}.$$

The correct version should be as follows. For \widetilde{U}_n to be defined as above and $n \in \mathbb{N}$, then

$$Q_n^2 - Q_{n-1}^2 = \widetilde{U}_{n+1}\widetilde{U}_{n-1} + 2\left(T_{-(n+3)}\mathbf{i} - (T_{-(n+2)} - T_{-(n+1)})\mathbf{j} + T_{-(n+2)}\mathbf{k}\right),$$
(1.1)

where T_{-n} is the *n*-th Tribonacci negative number $(n \in \mathbb{N})$ and satisfies the recurrence relation

$$T_{-(n+1)} = \begin{vmatrix} T_n & T_{n+1} \\ T_{n-1} & T_n \end{vmatrix} = T_n^2 - T_{n-1}T_{n+1}, \ n \ge 1.$$

There are several proofs of this famous quaternions, see for example [2, 3]. Actually, this identity plays a central role in proving one of the famous non-commutative properties of Tribonacci quaternions, say

$$Q_{n+1}Q_n - Q_nQ_{n+1} = 2\left(T_{n+3}^2 - T_{n+2}T_{n+4}\right)\mathbf{i} + 2\left(T_{n+1}T_{n+4} - T_{n+2}T_{n+3}\right)\mathbf{j} + 2\left(T_{n+2}^2 - T_{n+1}T_{n+3}\right)\mathbf{j} = 2\left(T_{-(n+4)}\mathbf{i} - \left(T_{-(n+3)} - T_{-(n+2)}\right)\mathbf{j} + T_{-(n+3)}\mathbf{k}\right),$$
(1.2)

with $n \ge 0$.

From Eqs. (1.1) and (1.2), we obtain

$$Q_n^2 - Q_{n-1}^2 - Q_n Q_{n-1} + Q_{n-1} Q_n = \widetilde{U}_{n+1} \widetilde{U}_{n-1}, \ n \ge 1.$$
 (1.3)

Similarly the identity 5 in [1]. Furthermore, one should note we should use the correct version of the identity (1.2) to obtain the conclusion.

References

 I. Akkus and G. Kızılaslan, On some Properties of Tribonacci Quaternion, An. Şt. Univ. Ovidius Constanţa, 26(3), 2018, 5–20.

- [2] G. Cerda-Morales, Identities for Third Order Jacobsthal Quaternions, Adv. Appl. Clifford Algebra, 27(2), 2017, 1043–1053.
- [3] G. Cerda-Morales, On a Generalization of Tribonacci Quaternions, Mediter. J. Math., 14(239), 2017, 1–12.

Gamaliel CERDA-MORALES, Institute of Mathematics, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Cerro Barón, Valparaíso, Chile. Email: gamaliel.cerda.m@mail.pucv.cl